快速发布求购| | | | | 加微群|
关注我们
本站客户服务

线上客服更便捷

仪表网官微

扫一扫关注我们

|
客户端
仪表APP

安卓版

仪表手机版

手机访问更快捷

仪表小程序

更多流量 更易传播


您现在的位置:仪表网>生物工程设备>资讯列表>深度学习技术与多源异构数据结合研究获进展

深度学习技术与多源异构数据结合研究获进展

2021年11月04日 08:59:52 人气: 11905 来源: 计算机网络信息中心
  【仪表网 仪表研发】近日,中国科学院计算机网络信息中心人工智能部博士研究生姚铁锤在研究员迟学斌、王彦棡和副研究员王珏的指导下,结合与国家电网有限公司的合作项目,取得多项研究成果。相关研究成果发表在IEEE Transactions on Sustainable Energy和Solar Energy上。
 
  在碳达峰碳中和目标下,新一代人工智能技术为推进构建以新能源为主体的新型电力系统提供了新思路与新手段,在新能源的能源分配及消耗、需求侧的能源节约、电力系统的调控等方面具有广阔的应用前景。光伏系统的功率输出主要受气候和天气条件的影响。光伏发电场需要准确的天气数据尤其是太阳辐照度预测其功率输出,从而提高太阳能资源的利用率。一方面,利用人工智能技术准确地预测未来发电量,对于确保电力系统的可靠性和经济性至关重要;另一方面,同时包含电站和天气数据的公开可用数据集能够促进太阳能光伏研究的发展。
 
  科研人员提出了面向多源异构数据的智能预测框架,在光伏预测领域得到较好的实验结果。该框架集成了处理非结构化数据的Advanced U-net模型和处理结构化数据的Encoder-decoder架构。基于深度学习方法,该框架能够有效提取各种类型数据(如分布式多传感器实时采集的测量数据、数值天气预报和卫星图像数据)的空间和时间特征并进行融合,有效提高了短临辐照度预测精度,进一步提升了光伏发电预测精度。该技术有望在国家电网调度进一步落地示范应用。
 
  人工智能部与北京交通大学新能源国际学院、国网河北省电力有限公司联合发布了具有电站量测数据和气象数据的光伏功率输出数据集。该工作整理光伏功率输出数据集和提出预处理算法,发布了超过27万条记录的高质量数据集和对应Python工具包,并使用晴空模型Kpv对其进行分析和相应的案例研究,以展示数据集的潜在用途。该数据和工具包的发布在新能源气象应用研究(如太阳能预测或光伏性能评估等)方面起到促进作用。
关键词: 深度学习
全年征稿/资讯合作 联系邮箱:ybzhan@vip.qq.com
版权与免责声明
1、凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
2、本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
3、如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
4、合作、投稿、转载授权等相关事宜,请联系本网。
联系我们

客服热线: 0571-87759942

加盟热线: 0571-87756399

媒体合作: 0571-87759945

投诉热线: 0571-87759942

关注我们
  • 下载仪表站APP

  • Ybzhan手机版

  • Ybzhan公众号

  • Ybzhan小程序